Publications scientifiques

Mitrofanis, J., Stone, J., Hamblin, M., Magistretti, P., Benabid, AL., Jeffery, G., (2024).

« A spotlight on dosage and subject selection for effective neuroprotection: exploring the central role of mitochondria » 

Neural regeneration research():10.4103/NRR.NRR-D-24-00222, June 03, 2024. | DOI: 10.4103/NRR.NRR-D-24-00222

 

Lau, A. A., Jin, K., Beard, H., Windram, T., Xie, K., O’Brien, J. A., Neumann, D., King, B. M., Snel, M. F., Trim, P. J., Mitrofanis, J., Hemsley, K. M., & Austin, P. J. (2024).

« Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice. »

Journal of neurochemistry, 10.1111/jnc.16145. Advance online publication. https://doi.org/10.1111/jnc.16145 

Hoh Kam, J., & Mitrofanis, J. (2024).

« Does photobiomodulation require glucose to work effectively? »

Neural regeneration research19(5), 945–946. https://doi.org/10.4103/1673-5374.385290

Perrier, Q., Tubbs, E., Benhamou, P. Y., Moro, C., & Lablanche, S. (2024).

« Photobiomodulation promotes the functionality and viability of human pancreatic islets in basal conditions and under cytokine stress conditions. »

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons24(3), 506–508.  https://doi.org/10.1016/j.ajt.2023.10.014

 

Hoh Kam, J., & Mitrofanis, J. (2023)

« Glucose Improves the Efficacy of Photobiomodulation in Changing ATP and ROS Levels in Mouse Fibroblast Cell Cultures. » 

Cells, 12(21), 2533. https://doi.org/10.3390/cells12212533 

Dole, M., Auboiroux, V., Langar, L., & Mitrofanis, J. (2023)

« A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. »

Reviews in the neurosciences, 34(6), 671–693. https://doi.org/10.1515/revneuro-2023-0003

Valverde, A., Hamilton, C., Moro, C., Billeres, M., Magistretti, P., & Mitrofanis, J. (2023)

« Lights at night: does photobiomodulation improve sleep? »

Neural regeneration research, 18(3), 474–477. https://doi.org/10.4103/1673-5374.350191

Naour, A. L., Beziat, E., Kam, J. H., Magistretti, P., Benabid, A. L., & Mitrofanis, J. (2023).

« Do astrocytes respond to light, sound, or electrical stimulation? »

Neural regeneration research, 18(11), 2343–2347. https://doi.org/10.4103/1673-5374.371343

Gordon, L. C., Martin, K. L., Torres, N., Benabid, A. L., Mitrofanis, J., Stone, J., Moro, C., & Johnstone, D. M. (2023)

« Remote photobiomodulation targeted at the abdomen or legs provides effective neuroprotection against parkinsonian MPTP insult. »

The European journal of neuroscience, 57(9), 1611–1624. https://doi.org/10.1111/ejn.15973

L. Struber, S. Karakas, A. Bellicha, L. Devigne, F. Pasteau, F. Martel, V. Juillard, A. Castillejo, S. Chabardes, T. Aksenova, G. Charvet & M. Babel. (BCI Meeting 2023) 

« A shared-control framework for BCI control of various effectors: towards home-used BCIs »

Moly, A., Aksenov, A., Martel, F. & Aksenova, T. (2023).

« Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI »

Frontiers in human neuroscience, 17, 1075666. https://doi.org/10.3389/fnhum.2023.1075666

Śliwowski, M., Martin, M., Souloumiac, A., Blanchart, P., & Aksenova, T. (2023).

« Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance. »

Frontiers in human neuroscience, 17, 1111645. https://doi.org/10.3389/fnhum.2023.1111645

Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CN, David O, Torres-Martinez N, Piallat B (2023)

« Excessive daytime sleepiness in a model of Parkinson’s disease improved by low-frequency stimulation of the pedunculopontine nucleus. »

NPJ Parkinson’s disease, 9(1), 9. https://doi.org/10.1038/s41531-023-00455-7

Moro, C., Liebert, A., Hamilton, C., Pasqual, N., Jeffery, G., Stone, J., & Mitrofanis, J. (2022).

« The code of light: do neurons generate light to communicate and repair? »

Neural regeneration research17(6), 1251–1252. https://doi.org/10.4103/1673-5374.327332

Benabid, A. L., Mitrofanis, J., Chabardes, S., & Garrec, P. (2022).

« Apport des techniques dans le domaine des déficits neurologiques : réalités et perspectives [What technologies bring in the field of neurological disorders: Current realities and future perspectives].  »

Medecine sciences : M/S38(3), 241–242. https://doi.org/10.1051/medsci/2022031

Shinhmar, H., Hoh Kam, J., Mitrofanis, J., Hogg, C., & Jeffery, G. (2022).

« Shifting patterns of cellular energy production (adenosine triphosphate) over the day and key timings for the effect of optical manipulation» 

Journal of biophotonics15(10), e202200093. https://doi.org/10.1002/jbio.202200093

Hamilton, C., Liebert, A., Pang, V., Magistretti, P., & Mitrofanis, J. (2022).

« Lights on for Autism: Exploring Photobiomodulation as an Effective Therapeutic Option. » 

Neurology international14(4), 884–893. https://doi.org/10.3390/neurolint14040071

Moro, C., Valverde, A., Dole, M., Hoh Kam, J., Hamilton, C., Liebert, A., Bicknell, B., Benabid, A. L., Magistretti, P., & Mitrofanis, J. (2022).

« The effect of photobiomodulation on the brain during wakefulness and sleep. »

Frontiers in neuroscience16, 942536. https://doi.org/10.3389/fnins.2022.942536

Liebert, A., Bicknell, B., Laakso, E. L., Heller, G., Jalilitabaei, P., Tilley, S., Mitrofanis, J., & Kiat, H. (2021).

« Improvements in clinical signs of Parkinson’s disease using photobiomodulation: a prospective proof-of-concept study. » 

BMC neurology21(1), 256. https://doi.org/10.1186/s12883-021-02248-y

Johnstone, D. M., Hamilton, C., Gordon, L. C., Moro, C., Torres, N., Nicklason, F., Stone, J., Benabid, A. L., & Mitrofanis, J. (2021).

« Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson’s Disease: A Comparison of Direct and Indirect Systemic Stimulations. »

Journal of Alzheimer’s disease : JAD83(4), 1399–1413. https://doi.org/10.3233/JAD-210052